
1

Simulation from the Normal Distribution
Truncated to an Interval far in the Tail

Zdravko Botev

University of New South Wales, Sydney, Australia

Pierre L’Ecuyer

Valuetools, Taormina, Italia, October 2016

2

Problem considered

Let 0� a < b and we want to generate a random variate X from the
standard normal density truncated to the interval [a, b].

The case where a < b � 0 can be treated by symmetry.
The case where a or b is near 0 or a < 0 < b is easier and can be handled
by standard methods.

−3 −2 −1 0 1 2 3

a
b

3

We distinguish two situations:

A. In the first, it is required that X be generated by inversion.
For example, inversion is often required in the context of quasi-Monte
Carlo, derivative estimation by finite differences, comparisons with
common random numbers, etc.

B. In case any accurate method is acceptable, then we can use rejection.

We compare the best available methods for each situation.
We also propose a new inversion method for the far tail.

4

Why do this?

For applications in Bayesian statistics and computational biology, for
example, it is often required to generate X from the multinormal or
Student-t distribution conditional on a ≤ X ≤ b, or conditional on X
satisfying a set of linear inequalities.

Efficient simulation-based methods for this require repeated draws from
normal distributions truncated to different intervals [a, b], often far in the
tail.

Generating a normal Y ∼ N(µ, σ2) truncated to [a′, b′] is equivalent to
generating a standard normal X truncated to
[a, b] = [(a′ − µ)/σ, (b′ − µ)/σ] and putting Y = σX + µ.
So it suffices to consider the standard normal.

5

Basic Inversion and Notation
Let φ be the standard normal density, Φ its cdf, Φ = 1− Φ the
complementary cdf, and Φ−1 the inverse cdf. We have

Φ−1(u) = min{x ∈ R | Φ(x) ≥ u}

and if X ∼ N(0, 1),

Φ(x) = P[X ≤ x] =

∫ x

−∞
φ(y)dy = 1− Φ(x).

Conditional on a ≤ X ≤ b, X has the TNa,b(0, 1) density

φ(x)

Φ(b)− Φ(a)
for a < x < b.

If U ∼ U(0, 1), then

X = Φ−1[Φ(a) + (Φ(b)− Φ(a))U] ∼ TNa,b(0, 1).

6

Very accurate approximations are available for Φ(x) and Φ−1(x), but
there are nasty numerical problems when x is large.

Under the IEEE-754 double precision standard, 1− ε is identified with 1
whenever 0 ≤ ε < 2× 10−16 (approximately).
For this reason, Φ(x) is identified with 1 whenever x > 8.3 (approx.).
Thus, direct inversion cannot work when a ≥ 8.3.

For a > 0, it is better to use:

X = −Φ−1[Φ(a)− (Φ(a)− Φ(b))U]

instead, which can be accurate for a up to about 37 if we use accurate
approximations of Φ(x) for x > 0 and of Φ−1(u) for u < 1/2. Such
accurate approximations are available, but not always used.

For larger a, we have a problem because Φ(a) is too small. In the IEEE
standard, positive numbers smaller than about 10−324 cannot be
represented at all (are identified with 0), and numbers smaller than 10−308

are represented with less than 52 bits of accuracy. For x ≥ 39, we have
Φ(a) < 10−324, so we need a different way to implement inversion.

7

Inversion far in the Right Tail

For large x , since Φ(x) is too small and nor representable, we will work

instead with the Mills ratio q(x)
def
= Φ(x)/φ(x). For large x , one has

q(x) ≈ 1

x
+

r∑
n=1

1× 3× 5× · · · × (2n − 1)

(−1)nx2n+1
.

This series diverges when r →∞ for fixed x , but it gives a lower bound
when r is odd and an upper bound when r is even. The distance between
the lowest upper bound and the highest lower bound converges to 0
rapidly when x increases. For x ≥ 10, taking r = 6 is sufficient.

Inversion amounts to finding the root x of

h(x)
def
= Φ(a)− Φ(x) + (Φ(b)− Φ(a))u = 0.

We start with an approximate solution x0 and refine it by Newton
iterations.

8

To get x0, we replace Φ in h(x) by the complementary cdf of the standard
Rayleigh distribution, F (x) = 1− F (x) = exp(−x2/2) for x ≥ 0. This
provides a good approximation for large x because Φ̄(x)/F̄ (x)→ 1 rapidly
when x →∞. Solving yields

x ≈ x0 = (a2 − 2 ln
(
1− u + u exp

(
(a2 − b2)/2

))
)1/2,

the u-th quantile of the truncated Rayleigh distribution.

Then we make the change of variable x = ξ(z)
def
=
√
a2 − 2 ln(z) and apply

Newton’s method to find the root of g(z)
def
= h(ξ(z)) = 0 in terms of z :

znew = z − g(z)/g ′(z),

where

g(z)

g ′(z)
= x

(
zq(x)− q(a)(1− u)− q(b)u exp

(
a2−b2

2

))
.

Computing g(z)/g ′(z) involve no very small quantity.

9

InverseMillsRatio: Returns the u-quantile of TNa,b(0, 1)

qa ← q(a)

qb ← q(b)

c ← qa(1− u) + qbu exp(a
2−b2
2)

δx ←∞
z ← 1− u + u exp(a

2−b2
2)

x ←
√

a2 − 2 ln(z)
repeat

z ← z − x(zq(x)− c)
xnew ←

√
a2 − 2 ln(z)

δx ← |xnew − x |/x
x ← xnew

until δx ≤ δ∗
return x

10

Inversion using best standard method (Blair et al. 1976) vs our algorithm,
with r = 5 and δ∗ = 10−14.

a b u standard method our algorithm

10.0 12.0 0.99 10.446272896499 10.446272896855
10.0 12.0 0.30 10.035260039588 10.035260039626
20.0 22.0 0.99 20.228389499595 20.228389499595
20.0 22.0 0.30 20.017781627473 20.017781627473
30.0 32.0 0.99 30.152946658582 30.152946658582
30.0 32.0 0.30 30.011873653870 30.011873653867
40.0 42.0 0.99 — 40.114892634811
40.0 42.0 0.30 — 40.008910319783
50.0 52.0 0.99 — 50.091982066969
50.0 52.0 0.30 — 50.007130140913

11

Rejection methods

The fastest rejection methods for the standard normal use precomputed
tables for the center of the distribution (e.g., Marsaglia’s ziggurat with
horizontal rectangular stripes, Chopin’s method for truncated normal with
about 4000 vertical stripes, etc.), and rejection with an exponential or
Rayleigh proposal g in the far tail [a,∞).

Marsaglia (1964) proposed Rayleigh proposal g .

Devroye (1986) proposed exponential g with rate a.

Both have exactly the same acceptance probability!

Geweke (1991) and Robert (1995) optimized the rate of the exponential
to λ that maximizes the acceptance probability. Slight improvement on
acceptance, e.g., from 0.843 to 0.933 for a = 2, and from 0.9975 to
0.9987 for a = 30, but not necessarily faster, because more overhead.

When [a, b] is very narrow, one can just use a uniform proposal.

When b =∞, we have the OneSide case.

12

When b <∞, one can either use a proposal that goes to infinity and
reject if X > b (RejectTail), or use a proposal truncated to [a, b]
(TruncTail). The latter gives fewer rejections, but more overhead.
Worthwhile only if Φ̄(b)/Φ̄(a)� 1.

When generating a large number of variates for the same truncation
interval, it may be worthwhile to precompute certain constants once for
all, instead of recomputing them each time.

Computing a log is about 10 times more costly than computing a square
root, and computing an exponential is 20 to 100 times more costly.

We implemented and compared the combinations of these possibilities,
and we report the CPU time to generate 108 truncated normals, in various
cases, in a Java environment, using SSJ.

13
X ∼ TNa,b(0, 1), exponential proposal with rate a, truncated

Ka ← 2a2

q ← 1− exp(−(b − a)a)
repeat

Generate U,V ∼ U(0, 1), independent
X ← − ln(1− qU)
E ← − ln(V)

until X 2 ≤ KaV
return a + X/a

X ∼ TNa,b(0, 1), exponential proposal with rate λ, truncated

λ← (a +
√
a2 + 4)/2

q ← 1− exp(−(b − a)λ)
repeat

Generate U,V ∼ U(0, 1), independent
X ← a− ln(1− qU)/λ

until V ≤ exp((X − λ)2/2)
return a + X/a

13
X ∼ TNa,b(0, 1), exponential proposal with rate a, truncated

Ka ← 2a2

q ← 1− exp(−(b − a)a)
repeat

Generate U,V ∼ U(0, 1), independent
X ← − ln(1− qU)
E ← − ln(V)

until X 2 ≤ KaV
return a + X/a

X ∼ TNa,b(0, 1), exponential proposal with rate λ, truncated

λ← (a +
√
a2 + 4)/2

q ← 1− exp(−(b − a)λ)
repeat

Generate U,V ∼ U(0, 1), independent
X ← a− ln(1− qU)/λ

until V ≤ exp((X − λ)2/2)
return a + X/a

14

X ∼ TNa,b(0, 1), Rayleigh proposal, truncated

c ← a2/2

q ← 1− exp(c − b2/2)
repeat

Simulate U,V ∼ U(0, 1), independently.
X ← c − ln(1− qU)

until V 2X ≤ a
return X ←

√
2X

X ∼ TNa,b(0, 1), Rayleigh proposal, RejectTail

c ← a2/2
repeat

Simulate U,V ∼ U(0, 1), independently.
X ← c − ln(U)

until V 2X ≤ a and 2X ≤ b ∗ b
return

√
2X

14

X ∼ TNa,b(0, 1), Rayleigh proposal, truncated

c ← a2/2

q ← 1− exp(c − b2/2)
repeat

Simulate U,V ∼ U(0, 1), independently.
X ← c − ln(1− qU)

until V 2X ≤ a
return X ←

√
2X

X ∼ TNa,b(0, 1), Rayleigh proposal, RejectTail

c ← a2/2
repeat

Simulate U,V ∼ U(0, 1), independently.
X ← c − ln(U)

until V 2X ≤ a and 2X ≤ b ∗ b
return

√
2X

15

X ∼ TNa,b(0, 1) with uniform proposal, truncated

repeat
Simulate U,V ∼ U(0, 1), independently.
X ← a + (b − a)U

until 2 lnV ≤ a2 − X 2

return X

16

n = 108 random variates in [a, b] = [3.0, 3.1]

Method CPU time (seconds)
recompute precompute

Generation in [a, b)
ExponD 6.46 6.22
ExponDRejectTail 23.04 23.20
ExponR 16.63 9.92
ExponRRejectTail 32.40 32.40
Rayleigh 10.29 4.60
RayleighRejectTail 15.23 15.33
Uniform 4.26 4.34

InverseSSJ 15.14 8.14

InverseRightTail 31.12 7.66

Generation in [a,∞)
ExponDOneSide 6.43 6.46
RayleighOneSide 4.07 4.41

InverseSSJOneSide 18.81 8.20

InverseRightTailOneSide 18.72 7.64

17

n = 108 random variates in [a, b] = [7.0, 8.0]

Method CPU time
recompute precompute

Generation in [a, b)
ExponD 11.70 6.16
ExponDRejectTail 6.04 6.08
ExponR 15.96 8.98
ExponRRejectTail 9.20 9.09
Rayleigh 9.86 4.27
RayleighRejectTail 3.91 3.99
Uniform 25.40 25.68

InverseSSJ 30.67 8.14

InverseRightTail 31.12 7.70

Generation in [a,∞)
ExponDOneSide 5.90 5.96
RayleighOneSide 3.74 4.05

InverseSSJOneSide 19.00 8.19

InverseRightTailOneSide 18.76 7.59

18

n = 108 random variates in [a, b] = [100.0, 102.0]

Method CPU time
recompute precompute

Generation in [a, b)
ExponD 11.68 6.01
ExponDRejectTail 5.88 5.91
ExponR 15.79 8.86
ExponRRejectTail 9.13 9.02
Rayleigh 9.97 4.16
RayleighRejectTail 3.84 3.90
Uniform 650.62 656.42

InverseMillsRatio 22.31 15.97
Generation in [a,∞)

ExponDOneSide 5.77 5.82
RayleighOneSide 3.67 3.96

InverseMillsRatioOneSide 15.62 15.84

19

n = 108 random variates in [a, b] = [100.0, 100.0001]

Method CPU time
recompute precompute

Generation in [a, b)
ExponD 12.31 6.83
ExponDRejectTail 543.80 546.58
ExponR 16.47 10.65
ExponRRejectTail 865.24 865.34
Rayleigh 10.59 5.07
RayleighRejectTail 323.08 322.41
Uniform 3.59 3.62

InverseMillsRatio 18.03 12.12
Generation in [a,∞)

ExponDOneSide 5.79 5.83
RayleighOneSide 3.66 3.99

InverseMillsRatioOneSide 15.67 15.84

20

Conclusion

I New accurate method for inversion in the far tail, even for X > 1039.

I Comparisons of various rejection methods for different ranges of
parameters.
Rayleigh is generally faster than exponential, and optimizing the rate
for the exponential to maximize acceptance probability is not worth.
Over a very small interval, a uniform proposal wins.

I Java software used for these tests is available.

I To do: for rejection, construct a software that selects automatically
the best combination given the interval [a, b] and how many variates
we want to generate.

